I'm trying to reconstruct the shape of a sail. I'm using the 3D sparse reconstruction method. I'm using two cameras with which I took two pictures. I managed to do the calibration of such cameras too. In the pictures it is possible to see the checkerboard and the code I wrote detects it properly.
Now, since my pictures are black and white and the quality of the cameras is quite low, I cannot use the detectFeatures method properly. Problems arise when I'm trying to use matchFeatures. To overcome this problem I decided to use instead a cpselect command. By doing so I can manually click on the features. The matching between points from the two views seems now to be correct. When I carry on with the code and try to reconstruct the 3D plot I get points all over the place. It seems deformed. The plot clearly does not represent the sail and I don't know why.
The code follows.
Thank you in advance
% % Load precomputed camera parameters
load IP_CalibrationCarlos.mat %Calibration feature
%
I1 = imread('/Users/riccardocamin/Documents/MATLAB/Frames/Scan1.1.jpg');
I2 = imread('/Users/riccardocamin/Documents/MATLAB/Frames/Scan2.1.jpg');
%
[I1, newOrigin1] = undistortImage(I1, cameraParameters, 'OutputView', 'full');
[I2, newOrigin2] = undistortImage(I2, cameraParameters, 'OutputView', 'full');
%
I1 = imcrop(I1, [80 10 1040 1300]); %Necessary so images have same size
I2 = imcrop(I2, [0 10 1067 1300]);
%
squareSize = 82; % checkerboard square size in millimeters
%
[imagePoints, boardSize, pairsUsed] = detectCheckerboardPoints(rgb2gray(I1), rgb2gray(I2));
[refPoints1, boardSize] = detectCheckerboardPoints(rgb2gray(I1));
[refPoints2, boardSize] = detectCheckerboardPoints(rgb2gray(I2));
%
% % Translate detected points back into the original image coordinates
refPoints1 = bsxfun(@plus, refPoints1, newOrigin1);
refPoints2 = bsxfun(@plus, refPoints2, newOrigin2);
%
worldPoints = generateCheckerboardPoints(boardSize, squareSize);
%
[R1, t1] = extrinsics(refPoints1, worldPoints, cameraParameters); %R = r t = translation
[R2, t2] = extrinsics(refPoints2, worldPoints, cameraParameters);
%
% % Calculate camera matrices using the |cameraMatrix| function.
cameraMatrix1 = cameraMatrix(cameraParameters, R1, t1);
cameraMatrix2 = cameraMatrix(cameraParameters, R2, t2);
%
cpselect(I1, I2); % Save them as 'matchedPoints1'and 'matchedPoints2'
%
indexPairs = matchFeatures(matchedPoints1, matchedPoints2);
% Visualize correspondences
figure;
showMatchedFeatures(I1, I2, matchedPoints1, matchedPoints2);
title('Matched Features');
%
[points3D] = triangulate(matchedPoints1, matchedPoints2, ...
cameraMatrix1, cameraMatrix2);
%
x = -points3D(:,1);
y = -points3D(:,2);
z = -points3D(:,3);
figure
scatter3(x,y,z, 25);
xlabel('X');
ylabel('Y');
zlabel('Z');