Okay, first of all I know Dijkstra does not work for negative weights and we can use Bellman-ford instead of it. But in a problem I was given it states that all the edges have weights from 0 to 1 (0 and 1 are not included). And the cost of the path is actually the product.
So what I was thinking is just take the log. Now all the edges are negative. Now I know Dijkstra won't work for negative weights but in this case all the edges are negative so can't we do something so that Dijkstra would work.
I though of multiplying all the weights by -1 but then the shortest path becomes the longest path.
So is there anyway I can avoid the Bellman-Ford algorithm in this case.
The exact question is: "Suppose for some application, the cost of a path is equal to the product all the weights of the edges in the path. How would you use Dijkstra's algorithm in this case? All the weights of the edges are from 0 to 1 (0 and 1 are not inclusive)."