I need to create a pivot table of 2000 columns by around 30-50 million rows from a dataset of around 60 million rows. I've tried pivoting in chunks of 100,000 rows, and that works, but when I try to recombine the DataFrames by doing a .append() followed by .groupby('someKey').sum(), all my memory is taken up and python eventually crashes.
How can I do a pivot on data this large with a limited ammount of RAM?
EDIT: adding sample code
The following code includes various test outputs along the way, but the last print is what we're really interested in. Note that if we change segMax to 3, instead of 4, the code will produce a false positive for correct output. The main issue is that if a shipmentid entry is not in each and every chunk that sum(wawa) looks at, it doesn't show up in the output.
import pandas as pd
import numpy as np
import random
from pandas.io.pytables import *
import os
pd.set_option('io.hdf.default_format','table')
# create a small dataframe to simulate the real data.
def loadFrame():
frame = pd.DataFrame()
frame['shipmentid']=[1,2,3,1,2,3,1,2,3] #evenly distributing shipmentid values for testing purposes
frame['qty']= np.random.randint(1,5,9) #random quantity is ok for this test
frame['catid'] = np.random.randint(1,5,9) #random category is ok for this test
return frame
def pivotSegment(segmentNumber,passedFrame):
segmentSize = 3 #take 3 rows at a time
frame = passedFrame[(segmentNumber*segmentSize):(segmentNumber*segmentSize + segmentSize)] #slice the input DF
# ensure that all chunks are identically formatted after the pivot by appending a dummy DF with all possible category values
span = pd.DataFrame()
span['catid'] = range(1,5+1)
span['shipmentid']=1
span['qty']=0
frame = frame.append(span)
return frame.pivot_table(['qty'],index=['shipmentid'],columns='catid', \
aggfunc='sum',fill_value=0).reset_index()
def createStore():
store = pd.HDFStore('testdata.h5')
return store
segMin = 0
segMax = 4
store = createStore()
frame = loadFrame()
print('Printing Frame')
print(frame)
print(frame.info())
for i in range(segMin,segMax):
segment = pivotSegment(i,frame)
store.append('data',frame[(i*3):(i*3 + 3)])
store.append('pivotedData',segment)
print('\nPrinting Store')
print(store)
print('\nPrinting Store: data')
print(store['data'])
print('\nPrinting Store: pivotedData')
print(store['pivotedData'])
print('**************')
print(store['pivotedData'].set_index('shipmentid').groupby('shipmentid',level=0).sum())
print('**************')
print('$$$')
for df in store.select('pivotedData',chunksize=3):
print(df.set_index('shipmentid').groupby('shipmentid',level=0).sum())
print('$$$')
store['pivotedAndSummed'] = sum((df.set_index('shipmentid').groupby('shipmentid',level=0).sum() for df in store.select('pivotedData',chunksize=3)))
print('\nPrinting Store: pivotedAndSummed')
print(store['pivotedAndSummed'])
store.close()
os.remove('testdata.h5')
print('closed')