This is what I have tried:
# Show the eigenspectrum
eigenvalues = pca.explained_variance_
print("The eigenvalues:\n\t", eigenvalues)
idx = eigenvalues.argsort()
print(idx)
plt.plot(idx, color='green', marker='D')
plt.ylabel('Eigenspectrum')
plt.show()
The shape of result is (640, 2), but what I keep getting is just a straight line.
Could someone please help?
Just to add, I ran a PCA on the data, and plotted a scatter plot of the data successfully. I am not sure how to extract all the eigenvalues, sort them and put into an eigenspectrum.
pca=PCA(n_components=2)
pca.fit(keytrain[:,0:-1])
keytrain_T=pca.transform(keytrain[:,0:-1])
print("Shape of result:", keytrain_T.shape)
# plot the results along with the labels
fig, ax = plt.subplots()
im = ax.scatter(keytrain_T[:, 0], keytrain_T[:, 1], c=y)
fig.colorbar(im);
plt.show()