i'm curious as to the kind of limitations even an expertly designed network might have. this one in particular is what i could use some insight on:
given:
a set of random integers of non-trivial size (say at least 500)
an expertly created/trained neural network.
task:
number anagram: create the largest representation of an infinite sequence of integers possible in a given time frame where the sequence either can be represented in closed form (ie - n^2, 2x+5, etc) or is registered in OEIS (http://oeis.org/). the numbers used to create the sequence can be taken from the input set in any order. so if the network is fed (3, 5, 1, 7...), returning (1, 3, 5, 7 ...) would be an acceptable result.
it's my understanding that an ANN can be trained to look for a particular sequence pattern (again - n^2, 2x+5, etc). what I'm wondering is if it can be made to recognize a more general pattern like n^y or xy+z. my thinking is that it won't be able to, because n^y can produce sequences that look different enough from one another that a stable 'base pattern' can't be established. that is - intrinsic to the way ANNs work (taking sets of input and doing fuzzy-matching against a static pattern it's been trained to look for) is that they are limited in terms of scope of what it is they can be trained to look for.
have i got this right?