I'm fairly new to python and pymc and wanted to try a problem out using pymc for learning purposes. I'm modeling a simple mendelian inheritence from grandparents down to son, but I don't understand how to reapply the same stochastic model multiple times. Any help is appreciated.
@py.stochastic
def childOf(value=1, d=0, m=0):
pdra=d/2
pmra=m/2
# now return likelihood
if (value==0):
return -np.log((1-pdra)*(1-pmra))
elif (value==1):
return -np.log((1-pdra)*(pmra)+(pdra)*(1-pmra))
else:
return -np.log((pdra*pmra))
p = [0.25,0.5,0.25]
gdd = py.Categorical("gdd", p, size=1)
gdm = py.Categorical("gdm", p, size=1)
gmd = py.Categorical("gmd", p, size=1)
gmm = py.Categorical("gmm", p, size=1)
gm=childOf('gm',d=gmm,m=gmd)
gd=childOf('gd',d=gdm,m=gdd)
gs=childOf('gs',d=gm,m=gd)
The error is a long string that ends with TypeError: 'numpy.ndarray' object is not callable on the first ChildOf