I have 14 first order differential equations.
14 conditions, 7 are initial ones like x1(0)=0
, x2(0)=5
...
7 are terminal ones x8(10)=25
,x9(10)=0
....
I think I should use bvp4c
I found this answer but I'm still have a couple of problems:how to solve a system of Ordinary Differential Equations (ODE's) in Matlab
I create a matlab function to put my system in.
x'=2x
y'=3x+5y
coding it like:
xdot=[2x(1);3x(1)+5x(2)]
like I would do in ode45
.
Then I should do the same for the boundary conditions. But I have no idea on how to code them.
I should build a matrix containing them, but I haven't understood how to build it.
I'm trying to use this reference: http://www.math.tamu.edu/~phoward/m442/matode.pdf pag 12, but he does the y2=y'
thing and I'm kind lost in my case. also it doesn't explain well how should I put the 14 conditions I have. 7 on one line and 7 on the other? how do I tell the program which value is referred to each variable?
thanks in advance.
here's the actual system. it's a bit huge, so I fear I need numerical methods.
f1=(delta1*gn-(beta*phi*x(7)*x(1)+(1-u1))/(x(1)+x(2)+x(3)+x(4))-mu*x(1)+psi*x(4));
f2=((beta*phi*x(7)*x(1)*(1-u1))/(x(1)+x(2)+x(3)+x(4))-d*x(2)-mu*x(2));
f3=(d*x(2)-(r+r0*u2)*x(3)-(alfa+mu)*x(3));
f4=((r+r0*u2)*x(3)-(mu+phi)*x(4));
f5=(delta2*hp-(phi*teta*x(3)*x(5)*(1-u1))/(x(1)+x(2)+x(3)+x(4))-gamma*x(5));
f6=((phi*teta*x(3)*x(5)*(1-u1))/(x(1)+x(2)+x(3)+x(4))-gamma*x(6)-k*x(6));
f7=(k*x(6)-gamma*x(7));
f8=x(8)*(mu - (beta*phi*x(1)*x(7) - u1 + 1)/(x(1) + x(2) + x(3) + x(4))^2 + (beta*phi*x(7))/(x(1) + x(2) + x(3) + x(4))) + x(9)*((beta*phi*x(7)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4)) - (beta*phi*x(1)*x(7)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2) + (teta*x(12)*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2 - (teta*x(13)*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2;
f9=x(9)*(d + mu - (beta*phi*x(1)*x(7)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2) - d*x(10) - A1 - (x(8)*(beta*phi*x(1)*x(7) - u1 + 1))/(x(1) + x(2) + x(3) + x(4))^2 + (teta*x(12)*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2 - (teta*x(13)*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2;
f10= x(10)*(alfa + mu + r + r0*u2) - A2 - x(11)*(r + r0*u2) - x(12)*((teta*phi*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4)) - (teta*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2) + x(13)*((teta*phi*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4)) - (teta*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2) - (x(8)*(beta*phi*x(1)*x(7) - u1 + 1))/(x(1) + x(2) + x(3) + x(4))^2 - (beta*x(9)*phi*x(1)*x(7)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2;
f11=x(11)*(mu + phi) - x(8)*(psi + (beta*phi*x(1)*x(7) - u1 + 1)/(x(1) + x(2) + x(3) + x(4))^2) - (beta*x(9)*phi*x(1)*x(7)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2 + (teta*x(12)*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2 - (teta*x(13)*phi*x(3)*x(5)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))^2;
f12=x(12)*(gamma - (teta*phi*x(3)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4))) + (teta*x(13)*phi*x(3)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4));
f13=x(13)*(gamma + k) - k*x(14);
f14=gamma*x(14) + (beta*x(8)*phi*x(1))/(x(1) + x(2) + x(3) + x(4)) + (beta*x(9)*phi*x(1)*(u1 - 1))/(x(1) + x(2) + x(3) + x(4));
extra:
u1=max(a1,min(b1,1/(2*B1)*(beta*phi/(x(1)+x(2)+x(3)+x(4))*x(7)*x(1)*(x(9)-x(8))+phi*teta/(x(1)+x(2)+x(3)+x(4))*x(3)*x(5)*(x(13)-x(12)))));
u2=max(a2,min(b2,1/(2*B2)*(r0*x(3)*x(10)-r0*x(3)*x(11))));