I wrote a recursive function for finding the min value of a binary tree (assume that it is not ordered).
The code is as below.
//assume node values are positive int.
int minValue (Node n) {
if(n == null) return 0;
leftmin = minValue(n.left);
rightmin = minValue(n.right);
return min(n.data, leftmin, rightmin);
}
int min (int a, int b, int c) {
int min = 0;
if(b != 0 && c != 0) {
if(a<=b) min =a;
else min =b;
if(min<=c) return min;
else return c;
}
if(b==0) {
if(a<=c) return a;
else return c;
}
if(c==0) {
if(a<=b) return a;
else return b;
}
}
I guess the time complexity of the minValue function is O(n) by intuition.
Is this correct? Can someone show the formal proof of the time complexity of minValue function?