I found this paper which lists their objective function as being:

Defined as:

where "Xmax = 1.0, thetaMax = pi/6, _X'max = 1.0, theta'Max =
3.0, N is the number of iteration steps, T = 0.02 * TS and Wk are selected positive weights." (Using specific values for angles, velocities, and positions from the paper, however, you will want to use your own values depending on the boundary conditions of your pendulum).
The paper also states "The first and second terms determine the accumulated sum of
normalised absolute deviations of X1 and X3 from zero and the third term when minimised, maximises the survival time."
That should be more than enough to get started with, but i HIGHLY recommend you read the whole paper. Its a great read and i found it quite educational.
You can make your own fitness function, but i think the idea of using a position, velocity, angle, and the rate of change of the angle the pendulum is a good idea for the fitness function. You can, however, choose to use those variables in very different ways than the way the author of the paper chose to model their function.
It wouldn't hurt to read up on harmonic oscillators either. They take the general form:
mx" + Bx' -kx = Acos(w*t)
(where B, or A may be 0 depending on whether or not the oscillator is damped/undamped or driven/undriven respectively).