I am trying to implement an inverse FFT in a HLSL compute shader and don't understand how the new inversebits function works. The shader is run under Unity3D, but that shouldn't make a difference.
The problem is, that the resulting texture remains black with the exception of the leftmost one or two pixels in every row. It seems to me, as if the reversebits function wouldn't return the correct indexes.
My very simple code is as following:
#pragma kernel BitReverseHorizontal
Texture2D<float4> inTex;
RWTexture2D<float4> outTex;
uint2 getTextureThreadPosition(uint3 groupID, uint3 threadID) {
uint2 pos;
pos.x = (groupID.x * 16) + threadID.x;
pos.y = (groupID.y * 16) + threadID.y;
return pos;
}
[numthreads(16,16,1)]
void BitReverseHorizontal (uint3 threadID : SV_GroupThreadID, uint3 groupID : SV_GroupID)
{
uint2 pos = getTextureThreadPosition(groupID, threadID);
uint xPos = reversebits(pos.x);
uint2 revPos = uint2(xPos, pos.y);
float4 values;
values.x = inTex[pos].x;
values.y = inTex[pos].y;
values.z = inTex[revPos].z;
values.w = 0.0f;
outTex[revPos] = values;
}
I played around with this for quite a while and found out, that if I replace the reversebits line with this one here:
uint xPos = reversebits(pos.x << 23);
it works. Although I have no idea why. Could be just coincidence. Could someone please explain to me, how I have to use the reversebits function correctly?