The problem is the starting values. We show two approaches to this as well as an alternative that converges even using the starting values in the question.
1) plinear The right hand side is linear in Q*b so it would be better to absorb b into Q and then we have a parameter that enters linearly so it is easier to solve. Also with the plinear algorithm no starting values are needed for the linear parameter so only the starting value for b need be specified. With plinear the right hand side of the nls formula should be specified as the vector that multiplies the linear parameter. The result of running nls giving fm0
below will be coefficients named b
and .lin
where Q = .lin / b.
We already have our answer from fm0
but if we want a clean run in terms of b
and Q
rather than b
and .lin
we can run the original formula in the question using the starting values implied by the coefficients returned by fm0
as shown.
fm0 <- nls(Y ~ X/(1+b*X), Data, start = list(b = 0.5), alg = "plinear")
st <- with(as.list(coef(fm0)), list(b = b, Q = .lin/b))
fm <- nls(Y ~ Q*b*X/(1+b*X), Data, start = st)
fm
giving
Nonlinear regression model
model: Y ~ Q * b * X/(1 + b * X)
data: Data
b Q
0.0721 366.2778
residual sum-of-squares: 920.6
Number of iterations to convergence: 0
Achieved convergence tolerance: 9.611e-07
We can display the result. The points are the data and the red line is the fitted curve.
plot(Data)
lines(fitted(fm) ~ X, Data, col = "red")
(contineud after plot)

2) mean Alternately, using a starting value of mean(Data$Y) for Q seems to work well.
nls(Y ~ Q*b*X/(1+b*X), Data, start = list(b = 0.5, Q = mean(Data$Y)))
giving:
Nonlinear regression model
model: Y ~ Q * b * X/(1 + b * X)
data: Data
b Q
0.0721 366.2779
residual sum-of-squares: 920.6
Number of iterations to convergence: 6
Achieved convergence tolerance: 5.818e-06
The question already had a reasonable starting value for b
which we used but if one were needed one could set Y
to Q*b
so that they cancel and X
to mean(Data$X) and solve for b
to give b = 1 - 1/mean(Data$X)
as a possible starting value. Although not shown using this starting value for b
with mean(Data$Y)
as the starting value for Q
also resulted in convergence.
3) optim If we use optim
the algorithm converges even with the initial values used in the question. We form the residual sum of squares and minimize that:
rss <- function(p) {
Q <- p[1]
b <- p[2]
with(Data, sum((Y - b*Q*X/(1+b*X))^2))
}
optim(c(1, 0.5), rss)
giving:
$par
[1] 366.27028219 0.07213613
$value
[1] 920.62
$counts
function gradient
249 NA
$convergence
[1] 0
$message
NULL