5

The L1-norm regularisation problem is defined as the following:

minimize || A*x - b ||_2^2  + || x ||_1

but in my case instead of this usual L1 -norm regularised least-square problem i want to solve a problem of this form:

minimize || A*x - b ||_2^2  + || W*G*x ||_1

due to the fact that my tables W and G do not have the same dimensions like A I can not change my variables and solve a problem like this

minimize || A*x/(W*B) - b ||_2^2  + || x ||_1

so that i can use one of the solvers that are available at internet. So i found an equation which solves the aforementioned L1 square problem, as:

minimize || A*x - b ||_2^2  + || x ||_1
minimize    || A*x - b ||_2^2  + e'*u
subject to  -u <= x <= u

So as far as i can understand if I use -u <= WGx <= u i can solve the problem. But i can not get what shall I exactly adapt to the code. Can anyone help? The code is the following (it is taken from CVXOPT)

from cvxopt import matrix, spdiag, mul, div, sqrt, normal, setseed
from cvxopt import blas, lapack, solvers, sparse, spmatrix
import math


def l1regls(A, b):
    """

    Returns the solution of l1-norm regularized least-squares problem

        minimize || A*x - b ||_2^2  + || x ||_1.

    """

    m, n = A.size
    q = matrix(1.0, (2*n,1))
    q[:n] = -2.0 * A.T * b

    def P(u, v, alpha = 1.0, beta = 0.0 ):
        """
            v := alpha * 2.0 * [ A'*A, 0; 0, 0 ] * u + beta * v 
        """
        v *= beta
        v[:n] += alpha * 2.0 * A.T * (A * u[:n])


    def G(u, v, alpha=1.0, beta=0.0, trans='N'):
        """
            v := alpha*[I, -I; -I, -I] * u + beta * v  (trans = 'N' or 'T')
        """

        v *= beta
        v[:n] += alpha*(u[:n] - u[n:])
        v[n:] += alpha*(-u[:n] - u[n:])

    h = matrix(0.0, (2*n,1))


    # Customized solver for the KKT system 
    #
    #     [  2.0*A'*A  0    I      -I     ] [x[:n] ]     [bx[:n] ]
    #     [  0         0   -I      -I     ] [x[n:] ]  =  [bx[n:] ].
    #     [  I        -I   -D1^-1   0     ] [zl[:n]]     [bzl[:n]]
    #     [ -I        -I    0      -D2^-1 ] [zl[n:]]     [bzl[n:]]
    #
    # where D1 = W['di'][:n]**2, D2 = W['di'][:n]**2.
    #    
    # We first eliminate zl and x[n:]:
    #
    #     ( 2*A'*A + 4*D1*D2*(D1+D2)^-1 ) * x[:n] = 
    #         bx[:n] - (D2-D1)*(D1+D2)^-1 * bx[n:] + 
    #         D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] - 
    #         D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:]           
    #
    #     x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n]  - D2*bzl[n:] ) 
    #         - (D2-D1)*(D1+D2)^-1 * x[:n]         
    #
    #     zl[:n] = D1 * ( x[:n] - x[n:] - bzl[:n] )
    #     zl[n:] = D2 * (-x[:n] - x[n:] - bzl[n:] ).
    #
    # The first equation has the form
    #
    #     (A'*A + D)*x[:n]  =  rhs
    #
    # and is equivalent to
    #
    #     [ D    A' ] [ x:n] ]  = [ rhs ]
    #     [ A   -I  ] [ v    ]    [ 0   ].
    #
    # It can be solved as 
    #
    #     ( A*D^-1*A' + I ) * v = A * D^-1 * rhs
    #     x[:n] = D^-1 * ( rhs - A'*v ).

    S = matrix(0.0, (m,m))
    Asc = matrix(0.0, (m,n))
    v = matrix(0.0, (m,1))

    def Fkkt(W):

        # Factor 
        #
        #     S = A*D^-1*A' + I 
        #
        # where D = 2*D1*D2*(D1+D2)^-1, D1 = d[:n]**-2, D2 = d[n:]**-2.

        d1, d2 = W['di'][:n]**2, W['di'][n:]**2

        # ds is square root of diagonal of D
        ds = math.sqrt(2.0) * div( mul( W['di'][:n], W['di'][n:]), 
            sqrt(d1+d2) )
        d3 =  div(d2 - d1, d1 + d2)

        # Asc = A*diag(d)^-1/2
        Asc = A * spdiag(ds**-1)

        # S = I + A * D^-1 * A'
        blas.syrk(Asc, S)
        S[::m+1] += 1.0 
        lapack.potrf(S)

        def g(x, y, z):

            x[:n] = 0.5 * ( x[:n] - mul(d3, x[n:]) + 
                mul(d1, z[:n] + mul(d3, z[:n])) - mul(d2, z[n:] - 
                mul(d3, z[n:])) )
            x[:n] = div( x[:n], ds) 

            # Solve
            #
            #     S * v = 0.5 * A * D^-1 * ( bx[:n] - 
            #         (D2-D1)*(D1+D2)^-1 * bx[n:] + 
            #         D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] - 
            #         D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:] )

            blas.gemv(Asc, x, v)
            lapack.potrs(S, v)

            # x[:n] = D^-1 * ( rhs - A'*v ).
            blas.gemv(Asc, v, x, alpha=-1.0, beta=1.0, trans='T')
            x[:n] = div(x[:n], ds)

            # x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n]  - D2*bzl[n:] ) 
            #         - (D2-D1)*(D1+D2)^-1 * x[:n]         
            x[n:] = div( x[n:] - mul(d1, z[:n]) - mul(d2, z[n:]), d1+d2 )\
                - mul( d3, x[:n] )

            # zl[:n] = D1^1/2 * (  x[:n] - x[n:] - bzl[:n] )
            # zl[n:] = D2^1/2 * ( -x[:n] - x[n:] - bzl[n:] ).
            z[:n] = mul( W['di'][:n],  x[:n] - x[n:] - z[:n] ) 
            z[n:] = mul( W['di'][n:], -x[:n] - x[n:] - z[n:] ) 

        return g

    return solvers.coneqp(P, q, G, h, kktsolver = Fkkt)['x'][:n]

Can anyone help? Thank you in advance

chrichat
  • 101
  • 8

0 Answers0