By definition, a square matrix that has a zero determinant should not be invertible. However, for some reason, after generating a covariance matrix, I take the inverse of it successfully, but taking the determinant of the covariance matrix ends up with an output of 0.0.
What could be potentially going wrong? Should I not trust the determinant output, or should I not trust the inverse covariance matrix? Or both?
Snippet of my code:
cov_matrix = np.cov(data)
adjusted_cov = cov_matrix + weight*np.identity(cov_matrix.shape[0]) # add small weight to ensure cov_matrix is non-singular
inv_cov = np.linalg.inv(adjusted_cov) # runs with no error, outputs a matrix
det = np.linalg.det(adjusted_cov) # ends up being 0.0