Rotations can be made simple (if you need only simplicity).
If the insertion traffic is left, the balance -1 is the red-light.
If the insertion traffic is right, the balance 1 is the red-light.
This is a (simplified) coarse-graining (2-adic rounding) of the normalized fundamental AVL balance:
{left,even,right} ~ {low,even,high} ~ {green,green,red}
Walk the insertion route and rotate every red-light (before the insertion). If the next light is green, you can just rotate the red-light 1 or 2 times. You may have to re-balance the next subtrees before each rotation, because inner subtrees are invariant. This is simple, but it takes a very long time. You have to move down the green-light before each rotation. You can always move down the green-light to the root, and you can rotate the tree-top to generate a new green-light.
The red-light rotations naturally move down the green-light.
At this point, you have only the green-lights for the insertion.
The cost structure of this naive method is topologically simplified as
df(h)/dh=∫f(h)dh
such as sin(h),sinh(h),etc.