I have been using cascade classifier to train some kind of plants. Here is a sample image for what I want to detect
I sampled the little green plants for positives, and made negatives out of images with similar background and no green plants (as suggested by many sources). Used many images similar to this one for sampling.
I did not have a lot of training data so of course I did not expect some idealistic classification results.
I have set the usual parameters min_hit_rate 0.95 max_false_alarm 0.5 etc. I have tried training with 5,6,7,8,9 and 10 stages. The strange thing that happens to me is that during the training process I get hit rate of 1 during all stages, and after 5 stages I get good acceptance ratio 0.004 (similar for later stages 6,7,8...). I tried testing my classifier on the same image which I used for the training samples and there is very illogical behavior:
- the classifier detects almost everything BUT the positive samples i took from it (the same samples in the training with HIT RATION EQUAL TO 1).
- the classifier is really but really slow it took over an hour for single input image (down-sampled scale factor 1.1).
I do not get it how could the same samples be classified as positives during training (through all the stages) and then NONE of it as positive on the image (there are a lot of false positives around it).
I checked everything a million times (I thought that I somehow mixed positives and negatives but I did not).
Can someone help me with this issue?