I have a pretty standard repository interface:
public interface IRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
{
TDomainEntity Find(Guid id);
void Add(TDomainEntity entity);
void Update(TDomainEntity entity);
}
We can use various infrastructure implementations in order to provide default functionality (e.g. Entity Framework, DocumentDb, Table Storage, etc). This is what the Entity Framework implementation looks like (without any actual EF code, for simplicity sake):
public abstract class EntityFrameworkRepository<TDomainEntity, TDataEntity> : IRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
where TDataEntity : class, IDataEntity
{
protected IEntityMapper<TDomainEntity, TDataEntity> EntityMapper { get; private set; }
public TDomainEntity Find(Guid id)
{
// Find, map and return entity using Entity Framework
}
public void Add(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
// Insert entity using Entity Framework
}
public void Update(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
// Update entity using Entity Framework
}
}
There is a mapping between the TDomainEntity
domain entity (aggregate) and the TDataEntity
Entity Framework data entity (database table). I will not go into detail as to why there are separate domain and data entities. This is a philosophy of Domain Driven Design (read about aggregates). What's important to understand here is that the repository will only ever expose the domain entity.
To make a new repository for, let's say, "users", I could define the interface like this:
public interface IUserRepository : IRepository<User>
{
// I can add more methods over and above those in IRepository
}
And then use the Entity Framework implementation to provide the basic Find
, Add
and Update
functionality for the aggregate:
public class UserRepository : EntityFrameworkRepository<Stop, StopEntity>, IUserRepository
{
// I can implement more methods over and above those in IUserRepository
}
The above solution has worked great. But now we want to implement deletion functionality. I have proposed the following interface (which is an IRepository
):
public interface IDeleteableRepository<TDomainEntity>
: IRepository<TDomainEntity>
{
void Delete(TDomainEntity item);
}
The Entity Framework implementation class would now look something like this:
public abstract class EntityFrameworkRepository<TDomainEntity, TDataEntity> : IDeleteableRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
where TDataEntity : class, IDataEntity, IDeleteableDataEntity
{
protected IEntityMapper<TDomainEntity, TDataEntity> EntityMapper { get; private set; }
// Find(), Add() and Update() ...
public void Delete(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
entity.IsDeleted = true;
entity.DeletedDate = DateTime.UtcNow;
// Update entity using Entity Framework
// ...
}
}
As defined in the class above, the TDataEntity
generic now also needs to be of type IDeleteableDataEntity
, which requires the following properties:
public interface IDeleteableDataEntity
{
bool IsDeleted { get; set; }
DateTime DeletedDate { get; set; }
}
These properties are set accordingly in the Delete()
implementation.
This means that, IF required, I can define IUserRepository
with "deletion" capabilities which would inherently be taken care of by the relevant implementation:
public interface IUserRepository : IDeleteableRepository<User>
{
}
Provided that the relevant Entity Framework data entity is an IDeleteableDataEntity
, this would not be an issue.
The great thing about this design is that I can start granualising the repository model even further (IUpdateableRepository
, IFindableRepository
, IDeleteableRepository
, IInsertableRepository
) and aggregate repositories can now expose only the relevant functionality as per our specification (perhaps you should be allowed to insert into a UserRepository
but NOT into a ClientRepository
). Further to this, it specifies a standarised way in which certain repository actions are done (i.e. the updating of IsDeleted
and DeletedDate
columns will be universal and are not at the hand of the developer).
PROBLEM
A problem with the above design arises when I want to create a repository for some aggregate WITHOUT deletion capabilities, e.g:
public interface IClientRepository : IRepository<Client>
{
}
The EntityFrameworkRepository
implementation still requires TDataEntity
to be of type IDeleteableDataEntity
.
I can ensure that the client data entity model does implement IDeleteableDataEntity
, but this is misleading and incorrect. There will be additional fields that are never updated.
The only solution I can think of is to remove the IDeleteableDataEntity
generic condition from TDataEntity
and then cast to the relevant type in the Delete()
method:
public abstract class EntityFrameworkRepository<TDomainEntity, TDataEntity> : IDeleteableRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
where TDataEntity : class, IDataEntity
{
protected IEntityMapper<TDomainEntity, TDataEntity> EntityMapper { get; private set; }
// Find() and Update() ...
public void Delete(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
var deleteableEntity = entity as IDeleteableEntity;
if(deleteableEntity != null)
{
deleteableEntity.IsDeleted = true;
deleteableEntity.DeletedDate = DateTime.UtcNow;
entity = deleteableEntity;
}
// Update entity using Entity Framework
// ...
}
}
Because ClientRepository
does not implement IDeleteableRepository
, there will be no Delete()
method exposed, which is good.
QUESTION
Can anyone advise of a better architecture which leverages the C# typing system and does not involve the hacky cast?
Interestly enough, I could do this if C# supported multiple inheritance (with separate concrete implementation for finding, adding, deleting, updating).