I found Stevens Computing Services – K & R Exercise 2-1 a very thorough answer to K&R 2-1. This slice of the full code computes the maximum value of a float
type in the C programming language.
Unluckily my theoretical comprehension of float
values is quite limited. I know they are composed of significand (mantissa.. ) and a magnitude which is a power of 2.
#include <stdio.h>
#include <limits.h>
#include <float.h>
main()
{
float flt_a, flt_b, flt_c, flt_r;
/* FLOAT */
printf("\nFLOAT MAX\n");
printf("<limits.h> %E ", FLT_MAX);
flt_a = 2.0;
flt_b = 1.0;
while (flt_a != flt_b) {
flt_m = flt_b; /* MAX POWER OF 2 IN MANTISSA */
flt_a = flt_b = flt_b * 2.0;
flt_a = flt_a + 1.0;
}
flt_m = flt_m + (flt_m - 1); /* MAX VALUE OF MANTISSA */
flt_a = flt_b = flt_c = flt_m;
while (flt_b == flt_c) {
flt_c = flt_a;
flt_a = flt_a * 2.0;
flt_b = flt_a / 2.0;
}
printf("COMPUTED %E\n", flt_c);
}
I understand that the latter part basically checks to which power of 2 it's possible to raise the significand with a three variable algorithm. What about the first part?
I can see that a progression of multiples of 2 should eventually determine the value of the significand, but I tried to trace a few small numbers to check how it should work and it failed to find the right values...
======================================================================
What are the concepts on which this program is based upon and does this program gets more precise as longer and non-integer numbers have to be found?