To give you an idea of where I'm coming from, this started as a teaching exercise to get a 12-year-old video game addict into coding. The 2D games, I did in SDL with him and that was fine because I wasn't planning on going into 3D. Yeah, right! So now I'm in at the deep end in OpenGL and mainly trying to figure out exactly what it can and cannot do. I understand the theory (still working on beziers and nurbs if the truth be told) and could code the whole thing by hand in calculated triangular vertices but I'd hate to spend days on that only to be told that there's a built in function/library that does the whole thing faster and easier.
Quadrics seem to be extremely powerful but not terribly flexible. Consider the human head - roughly speaking a 3x4x3 sphere or a torso as a truncated cone that's taller than it is wide than it is thick. Again, a quadric shape with independent x,y and z radii. Since only one radius is provided, am I right in thinking that I would have to generate it around the origin and then apply a scaling matrix to adjust them? Furthermore, if this is so, am I also correct in thinking that saving the results into a vertex array rather than a frame list results in the system neither knowing or caring how they got there?
Transitions: I'm familiar with the basic transitions but, again, consider the torso. It can achieve, maybe, a 45 degree twist from the hips to the shoulders that is distributed linearly across the entire length or even the sideways lean. This is applied around the Y or Z axis respectively but I've obviously missed something about applying transformations that are based on an independent value. (eg rot = dist x (max_rot/max_dist). Again, I could do this by hand (and will probably have to in order to apply the correct physics) but does OpenGL have this functionality built in somewhere?
Any other areas of research I need to put in would be appreciated in the notes.