Due to the nature of my problem, I want to evaluate the numerical implementations of the Radon transform in Matlab (i.e. different interpolation methods give different numerical values).
while trying to code my own Radon, and compare it to Matlab's output, I found out that my radon projection sizes are different than Matlab's.
So a bit of intuition of how I compute the amount if radon samples needed. Let's do the 2D case.
The idea is that the maximum size would be when the diagonal (in a rectangular shape at least) part is proyected in the radon transform, so diago=sqrt(size(I,1),size(I,2))
. As we dont wan nothing out, n_r=ceil(diago)
. n_r
should be the amount of discrete samples of the radon transform should be to ensure no data is left out.
I noticed that Matlab's radon
output is always even, which makes sense as you would want a "ray" through the rotation center always. And I noticed that there are 2 zeros in the endpoints of the array in all cases.
So in that case, n_r=ceil(diago)+mod(ceil(diago)+1,2)+2;
However, it seems that I get small discrepancies with Matlab.
A MWE:
% Try: 255,256
pixels=256;
I=phantom('Modified Shepp-Logan',pixels);
rd=radon(I,pi/4);
size(rd,1)
s=size(I);
diagsize=sqrt(sum(s.^2));
n_r=ceil(diagsize)+mod(ceil(diagsize)+1,2)+2
rd=
367
n_r =
365
As Matlab's Radon transform is a function I can not look into, I wonder why could it be this discrepancy.