These segments are largely a convenience for the program loader and operating system (though they also provide a basis for coarse-grained protection; execution permission can be limited to text and writes prohibited from rodata).1
The physical memory address space might be fragmented but not for the sake of such application segments. For example, in a NUMA system it might be convenient for hardware to use specific bits to indicate which node owns a given physical address.
For a system using address translation, the OS can somewhat arbitrarily place the segments in physical memory. (With segmented translation, external fragmentation can be a problem; a contiguous range of physical memory addresses may not be available, requiring expensive moving of memory segments. With paged translation, external fragmentation is not a possible. Segmented translation has the advantage of requiring less translation information: each segment requiring only a base and bound with other metadata whereas a memory section would typically have many more than two pages each of which has a base address and metadata.)
Without address translation, placement of segments would necessarily be less arbitrary. Fortunately, most programs do not care about the specific address where segments are placed. (Single address space OSes
(Note that it can be convenient for sharable sections to be in fixed locations. For code this can be used to avoid indirection through a global offset table without requiring binary rewriting in the program loader/dynamic linker. This can also reduce address translation overhead.)
Application-level programming is generally sufficiently abstracted from such segmentation that its existence is not noticeable. However, pure abstractions are naturally unfriendly to intense optimization for physical resource use, including execution time.
In addition, a programming system may choose to use a more complex placement of data (without the application programmer needing to know the implementation details). For example, use of coroutines may encourage using a cactus/spaghetti stack where contiguity is not expected. Similarly, a garbage collecting runtime might provide additional divisions of the address space, not only for nurseries but also for separating leaf objects, which have no references to collectable memory, from non-leaf objects (reducing the overhead of mark/sweep). It is also not especially unusual to provide two stack segments, one for data whose address is not taken (or at least is fixed in size) and one for other data.
1One traditional layout of these segments (with a downward growing stack) in a flat virtual address space for Unix-like OSes places text at the lowest address, rodata immediate above that, initialized data immediately above that, zero-initialized data (bss) immediately above that, heap growing upward from the top of bss, and stack growing downward from the top of the application's portion of the virtual address space.
Having heap and stack growing toward each other allows arbitrary growth of each (for a single thread using that address space!). This placement also allows a program loader to simply copy the program file into memory starting at the lowest address, groups memory by permission, and can sometimes allow a single global pointer to address all of the global/static data range (rodata, data, and bss).