I am trying to do sentiment analysis on newspaper articles and track the sentiment level across time. To do that, basically I will identify all the relevant news articles within a day, feed them into the polarity() function and obtain the average polarity scores of all the articles (more precisely, the average of all the sentence from all the articles) within that day.
The problem is, for some days, there will be many more articles compared to other days, and I think this might mask some of the info if we simply track the daily average polarity score. For example, a score of 0.1 from 30 news articles should carry more weight compared to a score of 0.1 generated from only 3 articles. and sure enough, some of the more extreme polarity scores I obtained came from days whereby there are only few relevant articles.
Is there anyway I can take the different number of articles each day into consideration?
library(qdap)
sentence = c("this is good","this is not good")
polarity(sentence)