As food for thought, here are 3 ways of evaluating the 3 sequential dot products:
With the normal Python reduce (which could also be written as a loop)
In [118]: reduce(np.dot,[S0,Sx,Sy,Sz])
array([[ 0.+1.j, 0.+0.j],
[ 0.+0.j, 0.+1.j]])
The einsum
equivalent
In [119]: np.einsum('ij,jk,kl,lm',S0,Sx,Sy,Sz)
The einsum
index expression looks like a sequence of operations, but it is actually evaluated as a 5d product with summation on 3 axes. In the C code this is done with an nditer
and strides, but the effect is as follows:
In [120]: np.sum(S0[:,:,None,None,None] * Sx[None,:,:,None,None] *
Sy[None,None,:,:,None] * Sz[None,None,None,:,:],(1,2,3))
In [127]: np.prod([S0[:,:,None,None,None], Sx[None,:,:,None,None],
Sy[None,None,:,:,None], Sz[None,None,None,:,:]]).sum((1,2,3))
A while back while creating a patch from np.einsum
I translated that C
code to Python
, and also wrote a Cython
sum-of-products function(s). This code is on github at
https://github.com/hpaulj/numpy-einsum
einsum_py.py
is the Python einsum, with some useful debugging output
sop.pyx
is the Cython code, which is compiled to sop.so
.
Here's how it could be used for part of your problem. I'm skipping the Sy
array since my sop
is not coded for complex numbers (but that could be changed).
import numpy as np
import sop
import einsum_py
S0 = np.array([[1., 0], [0, 1]])
Sx = np.array([[0., 1], [1, 0]])
Sz = np.array([[1., 0], [0, -1]])
print np.einsum('ij,jk,kl', S0, Sx, Sz)
# [[ 0. -1.] [ 1. 0.]]
# same thing, but with parsing information
einsum_py.myeinsum('ij,jk,kl', S0, Sx, Sz, debug=True)
"""
{'max_label': 108, 'min_label': 105, 'nop': 3,
'shapes': [(2, 2), (2, 2), (2, 2)],
'strides': [(16, 8), (16, 8), (16, 8)],
'ndim_broadcast': 0, 'ndims': [2, 2, 2], 'num_labels': 4,
....
op_axes [[0, -1, 1, -1], [-1, -1, 0, 1], [-1, 1, -1, 0], [0, 1, -1, -1]]
"""
# take op_axes (for np.nditer) from this debug output
op_axes = [[0, -1, 1, -1], [-1, -1, 0, 1], [-1, 1, -1, 0], [0, 1, -1, -1]]
w = sop.sum_product_cy3([S0,Sx,Sz], op_axes)
print w
As written sum_product_cy3
cannot take an arbitrary number of ops
. Plus the iteration space increases with each op and index. But I can imagine calling it repeatedly, either at the Cython level, or from Python. I think it has potential for being faster than repeat(dot...)
for lots of small arrays.
A condensed version of the Cython code is:
def sum_product_cy3(ops, op_axes, order='K'):
#(arr, axis=None, out=None):
cdef np.ndarray[double] x, y, z, w
cdef int size, nop
nop = len(ops)
ops.append(None)
flags = ['reduce_ok','buffered', 'external_loop'...]
op_flags = [['readonly']]*nop + [['allocate','readwrite']]
it = np.nditer(ops, flags, op_flags, op_axes=op_axes, order=order)
it.operands[nop][...] = 0
it.reset()
for x, y, z, w in it:
for i in range(x.shape[0]):
w[i] = w[i] + x[i] * y[i] * z[i]
return it.operands[nop]