First off, this is a really cool problem. I'm almost sure that my approach doesn't even distribute the numbers perfectly, but it should be better than some of the other approaches here.
I decided to build the array from the lowest number up (and shuffle them at the end). This allows me to always choose a random range that will allows yield valid results. Since the numbers must always be increasing, I solved for the highest possible number that ensures that a valid solution still exists (ie, if n=4 and max=31, if the first number was picked to be 7, then it wouldn't be possible to pick numbers greater than 7 such that the sum of 4 numbers would be equal to 31).
$n = 4;
$max = 31;
$array = array();
$current_min = 1;
while( $n > 1 ) {
//solve for the highest possible number that would allow for $n many random numbers
$current_max = floor( ($max/$n) - (($n-1)/2) );
if( $current_max < $current_min ) throw new Exception( "Can't use combination" );
$new_rand = rand( $current_min, $current_max ); //get a new rand
$max -= $new_rand; //drop the max
$current_min = $new_rand + 1; //bump up the new min
$n--; //drop the n
$array[] = $new_rand; //add rand to array
}
$array[] = $max; //we know what the last element must be
shuffle( $array );
EDIT: For large values of $n
you'll end up with a lot of grouped values towards the end of the array, since there is a good chance you will get a random value near the max value forcing the rest to be very close together. A possible fix is to have a weighted rand, but that's beyond me.