Your intuition is correct, you MAY loose precision when converting int
to float
. However it not as simple as presented in most other answers.
In Java a FLOAT uses a 23 bit mantissa, so integers greater than 2^23 will have their least significant bits truncated. (from a post on this page)
Not true.
Example: here is an integer that is greater than 2^23 that converts to a float with no loss:
int i = 33_554_430 * 64; // is greater than 2^23 (and also greater than 2^24); i = 2_147_483_520
float f = i;
System.out.println("result: " + (i - (int) f)); // Prints: result: 0
System.out.println("with i:" + i + ", f:" + f);//Prints: with i:2_147_483_520, f:2.14748352E9
Therefore, it is not true that integers greater than 2^23 will have their least significant bits truncated.
The best explanation I found is here:
A float in Java is 32-bit and is represented by:
sign * mantissa * 2^exponent
sign * (0 to 33_554_431) * 2^(-125 to +127)
Source: http://www.ibm.com/developerworks/java/library/j-math2/index.html
Why is this an issue?
It leaves the impression that you can determine whether there is a loss of precision from int to float just by looking at how large the int is.
I have especially seen Java exam questions where one is asked whether a large int would convert to a float with no loss.
Also, sometimes people tend to think that there will be loss of precision from int to float:
when an int is larger than: 1_234_567_890 not true (see counter-example above)
when an int is larger than: 2 exponent 23 (equals: 8_388_608) not true
when an int is larger than: 2 exponent 24 (equals: 16_777_216) not true
Conclusion
Conversions from sufficiently large ints to floats MAY lose precision.
It is not possible to determine whether there will be loss just by looking at how large the int is (i.e. without trying to go deeper into the actual float representation).