I am writing a numerical model in R, for an ecological system, and solving it using "lsoda" from package deSolve. My model has 14 state variables. I define the model, set it up fine, and give time duration according to this:
nyears<-60
ndays<-nyears*365+1
times<-seq(0,nyears*365,by=1)
Rates of change of state variables (e.g. the rate of change of variable "A1" is "dA1")are calculated according to existing values for state variables (at time=t) and a set of parameters. Simplified example:
dA1<-Tf*A1*(ImaxA*p_sub)
Where Tf, ImaxA and p_sub are parameters, and A1 is my state variable at time=t.
When I solve the model, I use the lsoda solver like this:
out<-as.data.frame(lsoda(start,times,model,parms))
Sometimes (depending on my parameter combinations), the model run completes over the entire duration I have specified, however sometimes it stops short of the mark (still giving me output up until the solver "crashes"). When it "crashes", this message is displayed:
DLSODA- At current T (=R1), MXSTEP (=I1) steps
taken on this call before reaching TOUT
In above message, I1 = 5000
In above message, R1 = 11535.5
Warning messages:
1: In lsoda(start, times, model, parms) :
an excessive amount of work (> maxsteps ) was done, but integration was not successful - increase maxsteps
2: In lsoda(start, times, model, parms) :
Returning early. Results are accurate, as far as they go
It commonly appears when one of the state variables is getting exponentially bigger, or is tending very near to zero, however sometimes it crashes when seemingly not much change is happening. I may be wrong, but is it due to the rate of change of state-variables becoming too large? If so, why might it also "crash" when there is not a fast rate of change? Is there a way that I can make the solver complete its task with the specified parameter values, maybe with a more relaxed tolerance for error?