I want to know whether the spectrogram
posted below is a true representation of the given non-stationary signal.
If it is a true representation, I have a number of questions regarding specific features in the plot...
For 0->.25 on the horizontal axis, why does it show signal components up to the highest frequencies? I assume that, given the first time duration t1
, I should only see the frequency of signal x1
. Furthermore, given the second time duration t2
, I should only see the frequency of signal x2
, and so on. But, that is not what i see in the below posted spectrogram
.
Could you please explain why we see these features in the spectrogram?
Spectrogram With equations
Code:
% Time specifications:
Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = 1; % seconds
t = (0:dt:StopTime-dt); % seconds
t1 = (0:dt:.25);
t2 = (.25:dt:.50);
t3 = (.5:dt:.75);
t4 = (.75:dt:1);
x1 = (10)*sin(2*pi*10*t1);
x2 = (10)*sin(2*pi*20*t2) + x1;
x3 = (10)*sin(2*pi*30*t3) + x2;
x4 = (10)*sin(2*pi*40*t4) + x3;
NFFT = 2 ^ nextpow2(length(t)); % Next power of 2 from length of y
Y = fft(x4, NFFT);
f = Fs / 2 * linspace(0, 1, NFFT/2 + 1);
%{
figure;
plot(f(1:200), 2 * abs( Y( 1:200) ) );
%}
T = 0:.01:1;
spectrogram(x4,10,9,NFFT);
ylabel('Frequency');
axis(get(gcf,'children'), [0, 1, 1, 50]);
Update_1: when i tried the suggested answer, i received the following.
??? Out of memory. Type HELP MEMORY for your options.
Error in ==> spectrogram at 168
y = y(1:length(f),:);
Error in ==> stft_1 at 36
spectrogram(x,10,9,NFFT);
The code used:
% Time specifications:
Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = 1; % seconds
t = (0:dt:StopTime-dt); % seconds
%get a full-length example of each signal component
x1 = (10)*sin(2*pi*10*t);
x2 = (10)*sin(2*pi*20*t);
x3 = (10)*sin(2*pi*30*t);
x4 = (10)*sin(2*pi*40*t);
%construct a composite signal
x = zeros(size(t));
I = find((t >= t1(1)) & (t <= t1(end)));
x(I) = x1(I);
I = find((t >= t2(1)) & (t <= t2(end)));
x(I) = x2(I);
I = find((t >= t3(1)) & (t <= t3(end)));
x(I) = x3(I);
I = find((t >= t4(1)) & (t <= t4(end)));
x(I) = x4(I);
NFFT = 2 ^ nextpow2(length(t)); % Next power of 2 from length of y
Y = fft(x, NFFT);
f = Fs / 2 * linspace(0, 1, NFFT/2 + 1);
%{
figure;
plot(f(1:200), 2 * abs( Y( 1:200) ) );
%}
T = 0:.01:1;
spectrogram(x,10,9,NFFT);
ylabel('Frequency');
axis(get(gcf,'children'), [0, 1, 1, 50]);
Update_2
% Time specifications:
Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = 1; % seconds
t = (0:dt:StopTime-dt); % seconds
t1 = ( 0:dt:.25);
t2 = (.25:dt:.50);
t3 = (.5:dt:.75);
t4 = (.75:dt:1);
%get a full-length example of each signal component
x1 = (10)*sin(2*pi*100*t);
x2 = (10)*sin(2*pi*200*t);
x3 = (10)*sin(2*pi*300*t);
x4 = (10)*sin(2*pi*400*t);
%construct a composite signal
x = zeros(size(t));
I = find((t >= t1(1)) & (t <= t1(end)));
x(I) = x1(I);
I = find((t >= t2(1)) & (t <= t2(end)));
x(I) = x2(I);
I = find((t >= t3(1)) & (t <= t3(end)));
x(I) = x3(I);
I = find((t >= t4(1)) & (t <= t4(end)));
x(I) = x4(I);
NFFT = 2 ^ nextpow2(length(t)); % Next power of 2 from length of y
Y = fft(x, NFFT);
f = Fs / 2 * linspace(0, 1, NFFT/2 + 1);
%{
figure;
plot(f(1:200), 2 * abs( Y( 1:200) ) );
%}
T = 0:.001:1;
spectrogram(x,10,9);
ylabel('Frequency');
axis(get(gcf,'children'), [0, 1, 1, 100]);
Dpectrogram_2: