For starters, yes, you can accomplish this with Boyer-Moore very efficiently. However, depending on some other parameters of your problem, there might be a better solution.
The Aho-Corasick string matching algorithm will find all occurrences of a set of pattern strings in a target string and does so in time O(m + n + z), where m is the length of the string to search, n is the combined length of all the patterns to match, and z is the total number of matches produced. This is linear in the size of the source and target strings if you just have one string to match. It also will find overlapping occurrences of the same string. Moreover, if you want to check how many times a set of strings appears in some source string, you only need to make one call to the algorithm. On top of this, if the set of strings that you want to search for never changes, you can do the O(n) work as preprocessing time and then find all matches in O(m + z).
If, on the other hand, you have one source string and a rapidly-changing set of substrings to search for, you may want to use a suffix tree. With O(m) preprocessing time on the string that you will be searching in, you can, in O(n) time per substring, check how many times a particular substring of length n appears in the string.
Finally, if you're looking for something you can code up easily and with minimal hassle, you might want to consider looking into the Rabin-Karp algorithm, which uses a roling hash function to find strings. This can be coded up in roughly ten to fifteen lines of code, has no preprocessing time, and for normal text strings (lots of text with few matches) can find all matches very quickly.
Hope this helps!