Using some black magic and graph theory I found a partial solution that might be good (not thoroughly tested).
The idea is to map your problem into a graph problem rather than a simple iterative problem (although it might work too!). So I defined the nodes of the graph to be the first letters and last letters of your words. I can only create edges between nodes of type first
and last
. I cannot map node first
number X to node last
number X (a word cannot be followed by it self). And from that your problem is just the same as the Longest path problem which tends to be NP-hard for general case :)
By taking some information here: stackoverflow-17985202 I managed to write this:
g = "audino bagon baltoy banette bidoof braviary bronzor carracosta charmeleon cresselia croagunk darmanitan deino emboar emolga exeggcute gabite girafarig gulpin haxorus"
words = g.split()
begin = [w[0] for w in words] # Nodes first
end = [w[-1] for w in words] # Nodes last
links = []
for i, l in enumerate(end): # Construct edges
ok = True
offset = 0
while ok:
try:
bl = begin.index(l, offset)
if i != bl: # Cannot map to self
links.append((i, bl))
offset = bl + 1 # next possible edge
except ValueError: # no more possible edge for this last node, Next!
ok = False
# Great function shamelessly taken from stackoverflow (link provided above)
import networkx as nx
def longest_path(G):
dist = {} # stores [node, distance] pair
for node in nx.topological_sort(G):
# pairs of dist,node for all incoming edges
pairs = [(dist[v][0]+1,v) for v in G.pred[node]]
if pairs:
dist[node] = max(pairs)
else:
dist[node] = (0, node)
node,(length,_) = max(dist.items(), key=lambda x:x[1])
path = []
while length > 0:
path.append(node)
length,node = dist[node]
return list(reversed(path))
# Construct graph
G = nx.DiGraph()
G.add_edges_from(links)
# TADAAAA!
print(longest_path(G))
Although it looks nice, there is a big drawback. You example works because there is no cycle in the resulting graph of input words, however, this solution fails on cyclic graphs.
A way around that is to detect cycles and break them. Detection can be done this way:
if nx.recursive_simple_cycles(G):
print("CYCLES!!! /o\")
Breaking the cycle can be done by just dropping a random edge in the cycle and then you will randomly find the optimal solution for your problem (imagine a cycle with a tail, you should cut the cycle on the node having 3 edges), thus I suggest brute-forcing this part by trying all possible cycle breaks, computing longest path and taking the longest of the longest path. If you have multiple cycles it becomes a bit more explosive in number of possibilities... but hey it's NP-hard, at least the way I see it and I didn't plan to solve that now :)
Hope it helps