I'm writing an algorithm that compresses data (LZSS) and it requires me to have two 13-bit values which I'll have to later merge together.
In some cases, however, I don't need 13 bits; 8 are enough. For this purpose I have a structure like this:
typedef struct pattern
{
char is_compressed:1; //flag
short index :13; //first value
short length :13; //second value
unsigned char c; //is 8 bits are enough, use this instead
} Pattern;
I therefore have an array of these structures, and each structure can either contain the two 13-bit values or an 8-bit value.
I am now looping over this array, and my objective is to merge all these bits together.
I easily calculated the total number of bits used and the number of arrays of unsigned char
s (8 bits) needed in order to store all the values:
int compressed = 0, plain = 0;
//count is the amount of patterns i have and p is the array of patterns (the structures)
for (int i = 0; i < count; i++)
{
if (p[i]->is_compressed)
compressed++;
else
plain++;
}
//this stores the number of bits used in the pattern (13 for length and 13 for the index or 8 for the plain uchar)
int tot_bits = compressed * 26 + plain * 8;
//since we can only write a minimum of 8 bits, we calculate how many arrays are needed to store the bits
int nr_of_arrays = (tot_bits % 8 == 0) ? tot_bits / 8 : (tot_bits / 8) + 1;
//we allocate the needed memory for the array of unsigned chars that will contain, concatenated, all the bits
unsigned char* uc = (unsigned char*) malloc(nr_of_arrays * sizeof(unsigned char));
After allocating the memory for the array I'm going to fill, I simply loop through the array of structures and recognize whether the structure I'm looking at contains the two 13-bit values or just the 8-bit one
for (int i = 0; i < count; i++)
{
if (p->is_compressed)
{
//The structure contains the two 13 bits value
}
else
{
//The structure only contains the 8 bits value
}
}
Here I'm stuck and can't seem to figure out a proper way of getting the job done.
Does anybody of you know how to implement that part there?
A practical example would be:
pattern 1 contains the 2 13-bit values:
1111 1111 1111 1
0000 0000 0000 0
pattern 2 contains the 8-bit value
1010 1010
total bits: 34
number of arrays required: 5 (that will waste 6 bits)
resulting array is:
[0] 1111 1111
[1] 1111 1000
[2] 0000 0000
[3] 0010 1010
[4] 1000 0000 (the remaining 6 bits are set to 0)