How does one prove (R->P) in Coq. I'm a beginner at this and don't know much of this tool. This is what I wrote:
Require Import Classical.
Theorem intro_neg : forall P Q : Prop,(P -> Q /\ ~Q) -> ~P.
Proof.
intros P Q H.
intro HP.
apply H in HP.
inversion HP.
apply H1.
assumption.
Qed.
Section Question1.
Variables P Q R: Prop.
Hypotheses H1 : R -> P \/ Q.
Hypotheses H2 : R -> ~Q.
Theorem trans : R -> P.
Proof.
intro HR.
apply NNPP.
apply intro_neg with (Q := Q).
intro HNP.
I can only get to this point.
The subgoals at this point are:
1 subgoals
P : Prop
Q : Prop
R : Prop
H1 : R -> P \/ Q
H2 : R -> ~ Q
HR : R
HNP : ~ P
______________________________________(1/1)
Q /\ ~ Q