Sort your array and check pairwise for the smallest distance.
The sort can be done using a divide and conquer algorithm, like merge_sort in O(nlog(n))
time.
For instance you could piggyback on merge sort like this :
# For convenience of representation, assume pairs to be defined as
# tuples of form ( no_1, no_2 )
def closest_pair(array):
l = len(array)
pivot = l/2
if len(array) == 2:
# Simply returns the pair
return (array[0], array[1])
if len(array) == 3:
# Returns the pair which has the smallest distance amongst the 3C2 pairs
return min(itertools.combinations(array, r = 2), key = lambda x : abs(x[1] - x[0]) )
left_closest = closest_pair(array[:pivot])
right_closest = closest_pair(array[pivot:])
split_pair = (array[pivot-1], array[pivot]) # Just incase the split_pair is the closest
return min(left_closest, right_closest, split_pair, key = lambda x : abs(x[1] - x[0]) )
For your array [1.2,2.9,3.1,4.0,5.7]
>>> closest_pair([1.2,2.9,3.1,4.0,5.7])
(2.9, 3.1)
Side Note:
If you don't care about the divide and conquer implementation, you could simply use min
using a key and itertools.combinations
( Like implemented above for the combine step / the base case of len(array)
equal to 3. )
>>> a = [1.2,2.9,3.1,4.0,5.7]
>>> min(itertools.combinations(a, r = 2), key = lambda x : abs(x[1] - x[0])))
(2.9, 3.1)
Check this to learn more about :
Hope this helps...