It depends, but you can control these event to execute some code, for example:
If you need that your bean is executed when the app start you need to add @Startup
annotation to your bean.
If you need to initialize your bean without access to other injected resources you can use the normal constructor.
If you need some method to be executed when the bean is initialized then use the @PostConstruct
annotation in the method.
You need to remember that the creation depends on the scope of the bean, in you case, which is a stateless bean, the bean will be created if some client injects it and there are no other instance available, if is singleton then will bean created just once, in general the bean will be created when they are needed (a singleton bean initialize until the first client uses it, or at startup with the annotation)
EDIT:
For the third question, the advantage is that if you use a resource, or other bean inside your HelperUtil
, they will be initialized with the proper values, for example, if you use an entity manager, or other beans inside your helper. If your helper will handle just things like static methods or other simple utilities then you are right, the advantage is none and you could simply manage like an static helper class, but if you need EE resources the you need the bean to be managed in order to get all injections and resources loaded
EDIT 2:
After some more years programming and using dependency injection in Java and C# Core, I can add: The question 3 is very open, using DI will allow your code to:
- be less coupled, if you change your constructor, you then would have to go searching all the
new ObjectModified(oldParams)
to add the new parameters
- more easy to test, because you can inject "fake objects" as dependencies, avoiding the need to load all the system and prepare the state for the test, for example, if you want to check some code that depends on the current hour, you could connect a fake provider in test mode to give always the same hour, or some sequence
- Avoid cyclical dependency, where class A depends on B and B depends on A, normally this is more complex, like
ClasssA -> ClasssB -> ClasssC -> ClasssA
When this dependencies are present, you can start a modification, then modify the class that uses it, and so on... until somehow you find yourself modifying the same class as before!, so you start in a cycle because the communication path between your objects are complex.
When you use DI, this cycles can be detected early on, so you can rethink your architecture to avoid this productivity blackholes
DI is a very powerful tool to keep big projects maintainable, is now present in a lot of environments and frameworks because is very useful, if this still does not convince you, you can try start a project in Spring boot, PlayFramework, Net Core, Java EE, Ruby on Rails.... and many others that have include this as the normal flow and build a medium size app, then try without DI