The first thing you need to do when learning about bottom-up parsing (such as LALR) is to remember that it is completely different from top-down parsing. Top-down parsing starts with a nonterminal, the left-hand-side (LHS) of a production, and guesses which right-hand-side (RHS) to use. Bottom-up parsing, on the other hand, starts by identifying the RHS and then figures out which LHS to select.
To be more specific, a bottom-up parser accumulates incoming tokens into a queue until a right-hand side is at the right-hand end of the queue. Then it reduces that RHS by replacing it with the corresponding LHS, and checks to see whether an appropriate RHS is at the right-hand edge of the modified accumulated input. It keeps on doing that until it decides that no more reductions will take place at that point in the input, and then reads a new token (or, in other words, takes the next input token and shifts it onto the end of the queue.)
This continues until the last token is read and all possible reductions are performed, at which point if what remains is the single non-terminal which is the "start symbol", it accepts the parse.
It is not obligatory for the parser to reduce a RHS just because it appears at the end of the current queue, but it cannot reduce a RHS which is not at the end of the queue. That means that it has to decide whether to reduce or not before it shifts any other token. Since the decision is not always obvious, it may examine one or more tokens which it has not yet read ("lookahead tokens", because it is looking ahead into the input) in order to decide. But it can only look at the next k
tokens for some value of k
, typically 1.
Here's a very simple example; a comma separated list:
1. Start -> List
2. List -> ELEMENT
3. List -> List ',' ELEMENT
Let's suppose the input is:
ELEMENT , ELEMENT , ELEMENT
At the beginning, the input queue is empty, and since no RHS is empty the only alternative is to shift:
queue remaining input action
---------------------- --------------------------- -----
ELEMENT , ELEMENT , ELEMENT SHIFT
At the next step, the parser decides to reduce using production 2:
ELEMENT , ELEMENT , ELEMENT REDUCE 2
Now there is a List
at the end of the queue, so the parser could reduce using production 1, but it decides not to based on the fact that it sees a , in the incoming input. This goes on for a while:
List , ELEMENT , ELEMENT SHIFT
List , ELEMENT , ELEMENT SHIFT
List , ELEMENT , ELEMENT REDUCE 3
List , ELEMENT SHIFT
List , ELEMENT SHIFT
List , ELEMENT -- REDUCE 3
Now the lookahead token is the "end of input" pseudo-token. This time, it does decide to reduce:
List -- REDUCE 1
Start -- ACCEPT
and the parse is successful.
That still leaves a few questions. To start with, how do we use the FIRST and FOLLOW sets?
As a simple answer, the FOLLOW set of a non-terminal cannot be computed without knowing the FIRST sets for the non-terminals which might follow that non-terminal. And one way we can decide whether or not a reduction should be performed is to see whether the lookahead is in the FOLLOW set for the target non-terminal of the reduction; if not, the reduction certainly should not be performed. That algorithm is sufficient for the simple grammar above, for example: the reduction of Start -> List
is not possible with a lookahead of ,, because , is not in FOLLOW(Start)
. Grammars whose only conflicts can be resolved in this way are SLR
grammars (where S
stands for "Simple", which it certainly is).
For most grammars, that is not sufficient, and more analysis has to be performed. It is possible that a symbol might be in the FOLLOW set of a non-terminal, but not in the context which lead to the current stack configuration. In order to determine that, we need to know more about how we got to the current configuration; the various possible analyses lead to LALR
, IELR
and canonical LR
parsing, amongst other possibilities.