I am having trouble obtaining values using the NSolve or Solve features in Mathematica for two non-linear equations in two unknowns. I am sure there must be a method to go about this, but am not sure what it is. Here is where I encounter the problem:
bco2=29.6833
bdec=209.891
aco2=2.75447*10^6
bco2=7.94935*10^7
P=41.4
T=411
R=83.1446
Solve[{P = (R*T)/(vliq - (xco2*bco2 + (1 - xco2)*bdec))
- (xco2^2*aco2 + 2*xco2*(1 - xco2)*0.87*Sqrt[aco2*adec]
+ (1 - xco2)^2*adec)/(vliq*(vliq + (xco2*bco2 + (1 - xco2)*bdec))),
xco2 = yco2*phivap/(Exp[Log[vliq/(vliq - (xco2*bco2 + (1 - xco2)*bdec))]
+ bco2/(vliq - (xco2*bco2 + (1 - xco2)*bdec))
- (2*(xco2*(aco2 + (1 - 0.13) Sqrt[aco2 + adec])))/(R*T*(xco2*bco2 + (1 - xco2)*bdec))*
Log[(vliq + (xco2*bco2 + (1 - xco2)*bdec))/vliq] + ((xco2^2*aco2 +
2*xco2*(1 - xco2)*0.87*Sqrt[aco2*adec] + (1 - xco2)^2*adec)*bco2)/(R*
T*(xco2*bco2 + (1 - xco2)*bdec)^2)*(Log[(vliq + (xco2*bco2 + (1 - xco2)*bdec))/vliq]
- (xco2*bco2 + (1 - xco2)*bdec)/(vliq + (xco2*bco2 + (1 - xco2)*bdec)))
- Log[(P*vliq)/(R*T)]])}, {xco2, vliq}]
I have also tried to use the NSolve feature with no success. I am a bit rusty in mathematica, so if anyone has any insight I would be very much obliged; thank you in advance for your help!