I've got panel data and have been playing around with k-means clustering. So now I've got a panel of factor values that are mostly stable but I'd like to smooth that out a bit more so that (for example) the data says "Wyoming was in group 1 in earlier years, moved into group 2, then moved into group 5" rather than "Wyoming was in group 1,1,1,2,3,2,2,5,5,5".
So the approach I'm taking is to use rollapply() to calculate the modal value. Below is code that works to calculate the mode ("Mode()"), and a wrapper for that ("ModeR()") that (perhaps clumsily) resolves the problem of multi-modal windows by randomly picking a mode. All that is fine, but when I put it into rollapply() I'm getting problems.
Mode <- function(vect){ # take a vector as input
temp <- as.data.frame(table(vect))
temp <- arrange(temp,desc(Freq)) # from dplyr
max.f <- temp[1,2]
temp <- filter(temp,Freq==max.f) # cut out anything that isn't modal
return(temp[,1])
}
ModeR <- function(vect){
out <- Mode(vect)
return(out[round(runif(1,min=0.5000001,max=length(out)+0.499999999))])
}
temp <- round(runif(20,min=1,max=10)) # A vector to test this out on.
cbind(temp,rollapply(data=temp,width=5,FUN=ModeR,fill=NA,align="right"))
which returned:
temp
[1,] 5 NA
[2,] 6 NA
[3,] 5 NA
[4,] 5 NA
[5,] 7 1
[6,] 6 1
[7,] 5 1
[8,] 5 1
[9,] 3 2
[10,] 1 3
[11,] 5 3
[12,] 7 3
[13,] 5 3
[14,] 4 3
[15,] 3 3
[16,] 4 2
[17,] 8 2
[18,] 5 2
[19,] 6 3
[20,] 6 3
Compare that with:
> ModeR(temp[1:5])
[1] 5
Levels: 5 6 7
> ModeR(temp[2:6])
[1] 6
Levels: 5 6 7
So it seems like the problem is in how ModeR is being applied in rollapply(). Any ideas?
Thanks! Rick