I am trying to use scipy.stats.entropy to estimate the Kullback–Leibler (KL) divergence between two distributions. More specifically, I would like to use the KL as a metric to decide how consistent two distributions are.
However, I cannot interpret the KL values. For ex:
t1=numpy.random.normal(-2.5,0.1,1000)
t2=numpy.random.normal(-2.5,0.1,1000)
scipy.stats.entropy(t1,t2)
0.0015539217193737955
Then,
t1=numpy.random.normal(-2.5,0.1,1000)
t2=numpy.random.normal(2.5,0.1,1000)
scipy.stats.entropy(t1,t2)
= 0.0015908295787942181
How can completely different distributions with essentially no overlap have the same KL value?
t1=numpy.random.normal(-2.5,0.1,1000)
t2=numpy.random.normal(25.,0.1,1000)
scipy.stats.entropy(t1,t2)
= 0.00081111364805590595
This one gives even a smaller KL value (i.e. distance), which I would be inclined to interpret as "more consistent".
Any insights on how to interpret the scipy.stats.entropy (i.e., KL divergence distance) in this context?