I'm developping a tool for radiotherapy inverse planning based in a pencil-beam approach. An important step in these methods (particularly in dose calculation) is a ray-tracing from many sources and one of the most used algorithms is Siddon's one (here there is a nice short description http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4218_CT_reconstruction_iterative_algebraic.pdf). Now, I will try to simplify my question:
The input data is a CT image (a 3D matrix with values) and some source positions around the image. You can imagine a cube and many points around, all at same distance but different orientation angles, where the radiation rays come from. Each ray will go through the volume and a value is assigned to each voxel according to the distance from the source. The advantage of Siddon's algorithm is that the length is calculated on-time during the iterative process of the ray-tracing. However, I know that Bresenham's algorithm is an efficient way to evaluate the path from one point to another in a matrix. Thus, the length from the source to a specific voxel could be easily calculated as the euclidean distance two points, even during Bresenham's iterative process.
So then, knowing that both are methods quite old already and efficient, there is a definitive advantage of using Siddon instead of Bresenham? Maybe I'm missing an important detail here but it is weird to me that in these dose calculation procedures Bresenham is not really an option and always Siddon appears as the gold standard.
Thanks for any comment or reply!
Good day.