since I think many of us don't have the same edition of "Introduction to algorithms" of Prof. Cormen et al., I'm gonna write the Lemma (and my question) in the following.
Edmonds-Karp-Algorithm
Lemma 26.7 (in 3rd edition; in 2nd it may be Lemma 26.8): If the Edmonds-Karp algorithm is run on a flow network G=(V,E) with source s and sink t, then for all vertices v in V{s,t}, the shortest-path distance df(s,v) in the residual network Gf increases monotonically with each flow augmentation
Proof: First, suppose that for some vertex v in V{s,t}, there is a flow augmentation that causes the shortest-path distance from s to v to decrease, then we will derive a contradiction. Let f be the flow just before the first augmentation that decreases some shortest-path distance, and let f' be the flow just afterward. Let v be the vertex with the minimum df'(s,v), whose distance was decreased by the augmentation, so that df'(s,v) < df(s,v). Let p = s ~~> u -> u be a shortest path from s to v in Gf', so that (u,v) in Ef' and
df'(s,u) = df'(s,v) - 1. (26.12)
Because of how we chose v, we know that the distance of vertex u from soruce s did not decrease, i.e.
df'(s,u) >= df(s,u). (26.13)
...
My question is: I don't really understand the phrase
"Because of how we chose v, we know that the distance of vertex u from soruce s did not decrease, i.e. df'(s,u) >= df(s,u). (26.13)"
How does the way we chose v affect the property that "the distance of vertex u from s did not decrease" ? How can I derive the equation (26.13).
We know, u is a vertex on the path (s,v) and (u,v) is also a part in (s,v). Why can (s,u) not decrease as well?
Thank you all for your help.