I am running a spark cluster with 50 machines. Each machine is a VM with 8-core, and 50GB memory (41 seems to be available to Spark).
I am running on several input folders, I estimate the size of input to be ~250GB gz compressed.
Although it seems to me that the amount and configuration of machines I am using seems to be sufficient, after about 40 minutes of run the job fail, I can see following errors in the logs:
2558733 [Result resolver thread-2] WARN org.apache.spark.scheduler.TaskSetManager - Lost task 345.0 in stage 1.0 (TID 345, hadoop-w-3.c.taboola-qa-01.internal): java.lang.OutOfMemoryError: Java heap space
java.lang.StringCoding$StringDecoder.decode(StringCoding.java:149)
java.lang.StringCoding.decode(StringCoding.java:193)
java.lang.String.<init>(String.java:416)
java.lang.String.<init>(String.java:481)
com.doit.customer.dataconverter.Phase0$3.call(Phase0.java:699)
com.doit.customer.dataconverter.Phase0$3.call(Phase0.java:660)
org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.apply(JavaRDDLike.scala:164)
org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.apply(JavaRDDLike.scala:164)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.FilteredRDD.compute(FilteredRDD.scala:34)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:54)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
java.lang.Thread.run(Thread.java:745)
and also:
2653545 [Result resolver thread-2] WARN org.apache.spark.scheduler.TaskSetManager - Lost task 122.1 in stage 1.0 (TID 392, hadoop-w-22.c.taboola-qa-01.internal): java.lang.OutOfMemoryError: GC overhead limit exceeded
java.lang.StringCoding$StringDecoder.decode(StringCoding.java:149)
java.lang.StringCoding.decode(StringCoding.java:193)
java.lang.String.<init>(String.java:416)
java.lang.String.<init>(String.java:481)
com.doit.customer.dataconverter.Phase0$3.call(Phase0.java:699)
com.doit.customer.dataconverter.Phase0$3.call(Phase0.java:660)
org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.apply(JavaRDDLike.scala:164)
org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.apply(JavaRDDLike.scala:164)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.FilteredRDD.compute(FilteredRDD.scala:34)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:54)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
java.lang.Thread.run(Thread.java:745)
How do I go about debugging such an issue?
EDIT: I Found the root cause of the problem. It is this piece of code:
private static final int MAX_FILE_SIZE = 40194304;
....
....
JavaPairRDD<String, List<String>> typedData = filePaths.mapPartitionsToPair(new PairFlatMapFunction<Iterator<String>, String, List<String>>() {
@Override
public Iterable<Tuple2<String, List<String>>> call(Iterator<String> filesIterator) throws Exception {
List<Tuple2<String, List<String>>> res = new ArrayList<>();
String fileType = null;
List<String> linesList = null;
if (filesIterator != null) {
while (filesIterator.hasNext()) {
try {
Path file = new Path(filesIterator.next());
// filter non-trc files
if (!file.getName().startsWith("1")) {
continue;
}
fileType = getType(file.getName());
Configuration conf = new Configuration();
CompressionCodecFactory compressionCodecs = new CompressionCodecFactory(conf);
CompressionCodec codec = compressionCodecs.getCodec(file);
FileSystem fs = file.getFileSystem(conf);
ContentSummary contentSummary = fs.getContentSummary(file);
long fileSize = contentSummary.getLength();
InputStream in = fs.open(file);
if (codec != null) {
in = codec.createInputStream(in);
} else {
throw new IOException();
}
byte[] buffer = new byte[MAX_FILE_SIZE];
BufferedInputStream bis = new BufferedInputStream(in, BUFFER_SIZE);
int count = 0;
int bytesRead = 0;
try {
while ((bytesRead = bis.read(buffer, count, BUFFER_SIZE)) != -1) {
count += bytesRead;
}
} catch (Exception e) {
log.error("Error reading file: " + file.getName() + ", trying to read " + BUFFER_SIZE + " bytes at offset: " + count);
throw e;
}
Iterable<String> lines = Splitter.on("\n").split(new String(buffer, "UTF-8").trim());
linesList = Lists.newArrayList(lines);
// get rid of first line in file
Iterator<String> it = linesList.iterator();
if (it.hasNext()) {
it.next();
it.remove();
}
//res.add(new Tuple2<>(fileType,linesList));
} finally {
res.add(new Tuple2<>(fileType, linesList));
}
}
}
return res;
}
Particularly allocating a buffer of size 40M for each file in order to read the content of the file using BufferedInputStream. This causes the stack memory to end at some point.
The thing is:
- If I read line by line (which does not require a buffer), it will be very non-efficient read
- If I allocate one buffer and reuse it for each file read - is it possible in parallelism sense? Or will it get overwritten by several threads?
Any suggestions are welcome...
EDIT 2: Fixed first memory issue by moving the byte array allocation outside the iterator, so it gets reused by all partition elements. But there is still the new String(buffer, "UTF-8").trim()) which gets created for the split purpose - that's an object that gets also created every time. I could use a stringbuffer/builder but then how would I set the charset encoding without a String object ?