I have a function that doubles the elements of a list in the form
double [x1, x2, ...] = [x1, x1, x2, x2, ...]
namely
fun double :: " 'a list ⇒ 'a list"
where
"double [] = []" |
"double (x#xs) = x # x # double xs"
and a function that reverses the elements of a list with the help of another function snoc
that adds an element to the right side of a list:
fun snoc :: "'a list ⇒ 'a ⇒ 'a list"
where
"snoc [] x = [x]" |
"snoc (y # ys) x = y # (snoc ys x)"
fun reverse :: "'a list ⇒ 'a list"
where
"reverse [] = []" |
"reverse (x # xs) = snoc (reverse xs) x"
Now I want to prove that
lemma rev_double: "rev (double xs) = double (rev xs)"
is true.
I tried to apply induction on xs
lemma rev_double: "rev (double xs) = double (rev xs)"
by (induction xs)
and I wrote an auxiliary lemma double_snoc
that ensures that doubling a list is the same as doubling its first element and the rest of the list (which uses the function snocleft
which inserts an element at the left end of a list)
fun snocleft::"'a list ⇒ 'a ⇒ 'a list "
where
"snocleft [] x = [x]" |
"snocleft (y # ys) x = x # (y # ys)"
lemma double_snoc: "double (snocleft xs y) = y # y # double xs"
by (induction xs) auto
I still haven't made any progress in proving the lemma. Do you have some solutions or hints on how to set up the prove?