No, conversion from void*
to char*
in C (it's a common example to explain where they're different!) is implicit so casting is unnecessary (then wrong because it may hide a problem if you wrongly change char
to int
).
Quoting "The C Programming Language, 2nd edition" by K&R (§A.6.8):
Any pointer to an object may be converted to type void* without loss of information. If the result is converted back to the original pointer type, the original pointer is recovered. Unlike the pointer-to-pointer conversions discussed in Par.A.6.6, which generally require an explicit cast, pointers may be assigned to and from pointers of type void*, and may be compared with them.
Please note "If the result is converted back to the original pointer type" because is crucial: if instead of char*
you had int*
then it may be wrong because of memory alignment.
From C99 standard (§6.3.2.3) about when conversion is possible:
A pointer to void may be converted to or from a pointer to any incomplete or object type. A pointer to any incomplete or object type may be converted to a pointer to void and back again; the result shall compare equal to the original pointer.
Now let's see when can be implicit (thanks to mafso for very quick search), from C11 (n1570) §6.5.4p3:
Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall be specified by means of an explicit cast.
Then §6.5.16.1:
One of the following shall hold: [...] the left operand has atomic, qualified, or unqualified pointer type, and (considering the type the left operand would have after lvalue conversion) one operand is a pointer to an object type, and the other is a pointer to a qualified or unqualified version of void, and the type pointed to by the left has all the qualifiers of the type pointed to by the right