A better way to solve this is to build up a list of your powers of 10. This is quite simple using iterate
:
powersOf :: Num a => a -> [a]
powersOf n = iterate (*n) 1
Then you just need to multiply these powers of 10 by their respective values in the list of digits. This is easily accomplished with zipWith (*)
, but you have to make sure it's in the right order first. This basically just means that you should re-order your digits so that they're in descending order of magnitude instead of ascending:
zipWith (*) (powersOf 10) $ reverse xs
But we want it to return an Integer
, not Int
, so let's through a map fromIntegral
in there
zipWith (*) (powersOf 10) $ map fromIntegral $ reverse xs
And all that's left is to sum them up
fromDigits :: [Int] -> Integer
fromDigits xs = sum $ zipWith (*) (powersOf 10) $ map fromIntegral $ reverse xs
Or for the point-free fans
fromDigits = sum . zipWith (*) (powersOf 10) . map fromIntegral . reverse
Now, you can also use a fold, which is basically just a pure for loop where the function is your loop body, the initial value is, well, the initial state, and the list you provide it is the values you're looping over. In this case, your state is a sum and what power you're on. We could make our own data type to represent this, or we could just use a tuple with the first element being the current total and the second element being the current power:
fromDigits xs = fst $ foldr go (0, 1) xs
where
go digit (s, power) = (s + digit * power, power * 10)
This is roughly equivalent to the Python code
def fromDigits(digits):
def go(digit, acc):
s, power = acc
return (s + digit * power, power * 10)
state = (0, 1)
for digit in digits:
state = go(digit, state)
return state[0]