I conducted a feature selection using lasso method as well as a covariance test using covTest::covTest
to retrieve the p.values. I borrow an example from covTest
such that:
require(lars)
require(covTest)
set.seed(1234)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)/sqrt(99)
beta=c(4,rep(0,9))
y=x%*%beta+.4*rnorm(100)
a=lars(x,y)
covTest(a,x,y)
$results
Predictor_Number Drop_in_covariance P-value
1 105.7307 0.0000
6 0.9377 0.3953
10 0.2270 0.7974
3 0.0689 0.9334
7 0.1144 0.8921
2 0.0509 0.9504
9 0.0508 0.9505
8 0.0006 0.9994
4 0.1190 0.8880
5 0.0013 0.9987
$sigma
[1] 0.3705
$null.dist
[1] "F(2,90)
The covTest's results showed the p-values of the top hit features. My question is how to retrieve the coefficient of these features such as that of the predictor 1 as well as its Std.err
and 95%CI
. I'd to compare these estimates with the counterparts from glm
.