I'm trying to use Z3 to solve equations involving unknown projection functions, to find a valid interpretation of the functions that satisfy the equation. So for example for the equation: snd . f = g . fst
a valid interpretation would be f = \(x,y) -> (y,x)
and g = id
. I know that Z3 isn't higher order so I've been trying to encode the problem in first order form. So for example for f = g.fst
I use:
(declare-datatypes (T) ((Tree (leaf (value T)) (node (children TreeList)))
(TreeList nil (cons (head Tree) (tail TreeList)))))
(define-fun fst ((x (Tree Int))) (Tree Int) (head (children x)))
(define-fun snd ((x (Tree Int))) (Tree Int) (head (tail (children x))))
(declare-fun f ((Tree Int)) (Tree Int))
(declare-fun g ((Tree Int)) (Tree Int))
(assert (forall ((x (Tree Int))) (= (f x) (g (fst x)))))
(check-sat)
(get-model)
Which sort of works returning:
(define-fun g ((x!1 (Tree Int))) (Tree Int)
(leaf 0))
(define-fun f ((x!1 (Tree Int))) (Tree Int)
(g (head (children x!1))))
However for snd . f = g . fst
(I've simplified trees to pairs to try and help):
(declare-datatypes (T) ((Pair (leaf (value T)) (pair (fst Pair) (snd Pair)))))
(declare-fun f ((Pair Int)) (Pair Int))
(declare-fun g ((Pair Int)) (Pair Int))
(assert (forall ((x (Pair Int))) (= (snd (f x)) (g (fst x)))))
I get unknown
.
I've also tried to encode a similar problem without the ADT just using booleans or ints as parameters, but then the model just assigns constant values to the functions. I've also tried to define a simple ADT for function constants, the identity function, and pairwise and sequential composition, and then define an "equals" function that can simplify expressions like f.id = f
, but this either involves a recursive function like:
(declare-datatypes () (
(Fun id
(fun (funnum Int))
(seq (after Fun) (before Fun))
(pair (fst Fun) (snd Fun)) )))
(define-fun eq ((x Fun) (y Fun)) Bool (or
(= x y)
(eq x (seq y id)) ; id neutral for seq
(eq x (seq id y))
(eq y (seq x id))
(eq y (seq id x))))
(declare-const f Fun)
(declare-const g Fun)
(assert (eq f (seq id g)))
(check-sat)
(get-model)
Which is obviously invalid. Or if I use an uninterpretted function, it makes "eq" a constant function i.e.
(declare-fun eq (Fun Fun) Bool)
(assert (forall ((x Fun) (y Fun)) ; semantic equality
(= (eq x y) (or
(= x y) ; syntactic eq
(eq x (seq y id)) ; id neutral for seq
(eq x (seq id y))
(eq y (seq x id))
(eq y (seq id x))
))
))
=>
(define-fun eq ((x!1 Fun) (x!2 Fun)) Bool
true)
And similarly with equations involving functions with type Int -> Int, this returns constant functions for f and g:
(declare-fun f (Int) Int)
(declare-fun g (Int) Int)
(assert (forall ((x Int)) (= (+ (f x) 1) (+ (g x) 2)) ))
and adding these times out:
(assert (forall ((x Int) (y Int)) (=>
(not (= x y))
(not (= (g x) (g y))))))
(assert (forall ((x Int) (y Int)) (=>
(not (= x y))
(not (= (f x) (f y))))))
Any ideas how I can get this sort of thing to work?
Many thanks!