I am trying to paralellize a matrix processing program. After using OpenMP I decided to also check out CilkPlus and I noticed the following:
In my C code, I only apply parallelism in one part i.e.:
//(test_function declarations)
cilk_spawn highPrep(d, x, half);
d = temp_0;
r = malloc(sizeof(int)*(half));
temp_1 = r;
x = x_alloc + F_EXTPAD;
lowPrep(r, d, x, half);
cilk_sync;
//test_function return
According to the documentation I have read so far, cilk_spawn is expected to -maybe- (CilkPlus does not enforce parallelism) take the highPrep() function and execute it in a different hardware thread should one be available, and then continue with the execution of the rest of the code, including the function lowPrep(). The threads then should synchronize at cilk_sync before the execution proceeds with the rest of the code.
I am running this on an 8core/16thread Xeon E5-2680, that does not execute anything else at any given time apart from my experiments. My question at this point is that I notice that when I change the environment variable CILK_NWORKERS and try values such as 2, 4, 8, 16 the time that the test_function requires to be executed changes with a big variation. In particular, the higher the CILK_NWORKERS is set (after 2) the slower the function becomes. This seems counter intuitive to me since I would expect the available number of threads not to change the operation of cilk_spawn. I would expect that if 2 threads are available then the function highPrep is executed on another thread. Anything more than 2 threads I would expected to remain idle.
The highPrep and lowPrep functions are:
void lowPrep(int *dest, int *src1, int *src2, int size)
{
double temp;
int i;
for(i = 0; i < size; i++)
{
temp = -.25 * (src1[i] + src1[i + 1]) + .5;
if (temp > 0)
temp = (int)temp;
else
{
if (temp != (int)temp)
temp = (int)(temp - 1);
}
dest[i] = src2[2*i] - (int)(temp);
}
}
void highPrep(int *dest, int *src, int size)
{
double temp;
int i;
for(i=0; i < size + 1; i++)
{
temp = (-1.0/16 * (src[-4 + 2*i] + src[2 + 2*i]) + 9.0/16 * (src[-2 + 2*i] + src[0 + 2*i]) + 0.5);
if (temp > 0)
temp = (int)temp;
else
{
if (temp != (int)temp)
temp = (int)(temp - 1);
}
dest[i] = src[-1 + 2*i] - (int)temp;
}
}
There must be a reasonable explanation behind this, is it reasonable to expect different execution times for a program like this?