I'm taking an artificial intelligence class and we are working with Answer Set Programming (Clingo specifically). We're talking mostly theory at the moment and I am having some trouble differentiating between models and least models. I have the following definitions:
Satisfying rules, models, least models and answer sets of definite program
- A program is called definite if it does not have “not” in the body of its rules.
- A set S is said to satisfy a rule of the form a :- b1, …, bm, not c1, …, not cn. if its body is satisfied by S (I.e., b1 … bm are in S and none of c1 ... cn are in S) implies that its head must be satisfied by S (i..e, a is in S).
- A set S is said to satisfy a program if it satisfies all rules of that program.
- A set S is said to be an answer set of a definite program P if (a) S satisfies P (also referred to as S is a model of P) and (b) No strict subset of S satisfies P (i.e., S is the least model of P).
With the question (pulled from the lecture slides, not homework):
P is defined as:
a :- b,e.
b.
c :- d,b.
d.
Which of the following are models and least models?
{}, {b}, {b,d}, {b,d,c}, {b,d,c,e}, {b,d,c,e,a}
Can anyone let me know what the answer to the above question is? I can probably figure out the difference from there, although if someone could explain the difference in common speak (rather than text-book definition), that would be wonderful. I'm not sure which forum to post this question under - please let me know if it should be posted somewhere else.
Thanks