I have an async method that fetches some data from a database. This operation is fairly expensive, and takes a long time to complete. As a result, I'd like to cache the method's return value. However, it's possible that the async method will be called multiple times before its initial execution has a chance to return and save its result to the cache, resulting in multiple calls to this expensive operation.
To avoid this, I'm currently reusing a Task
, like so:
public class DataAccess
{
private Task<MyData> _getDataTask;
public async Task<MyData> GetDataAsync()
{
if (_getDataTask == null)
{
_getDataTask = Task.Run(() => synchronousDataAccessMethod());
}
return await _getDataTask;
}
}
My thought is that the initial call to GetDataAsync
will kick off the synchronousDataAccessMethod
method in a Task
, and any subsequent calls to this method before the Task
has completed will simply await the already running Task
, automatically avoiding calling synchronousDataAccessMethod
more than once. Calls made to GetDataAsync
after the private Task
has completed will cause the Task
to be awaited, which will immediately return the data from its initial execution.
This seems to be working, but I'm having some strange performance issues that I suspect may be tied to this approach. Specifically, awaiting _getDataTask
after it has completed takes several seconds (and locks the UI thread), even though the synchronousDataAccessMethod
call is not called.
Am I misusing async/await? Is there a hidden gotcha that I'm not seeing? Is there a better way to accomplish the desired behavior?
EDIT
Here's how I call this method:
var result = (await myDataAccessObject.GetDataAsync()).ToList();
Maybe it has something to do with the fact that the result is not immediately enumerated?