The documentation for portfolio.optim {tseries} says that solve.QP {quadprog} is used to generate the solution for finding the tangency portfolio that maximizes the Sharpe ratio. That implies that results should be identical with either function. I'm probably overlooking something, but in this simple example I get similar but not identical solutions for estimating optimal portfolio weights with portfolio.optim and solve.QP. Shouldn't the results be identical? If so, where am I going wrong? Here's the code:
library(tseries)
library(quadprog)
# 1. Generate solution with solve.QP via: comisef.wikidot.com/tutorial:tangencyportfolio
# create artifical data
set.seed(1)
nO <- 100 # number of observations
nA <- 10 # number of assets
mData <- array(rnorm(nO * nA, mean = 0.001, sd = 0.01), dim = c(nO, nA))
rf <- 0.0001 # riskfree rate (2.5% pa)
mu <- apply(mData, 2, mean) # means
mu2 <- mu - rf # excess means
# qp
aMat <- as.matrix(mu2)
bVec <- 1
zeros <- array(0, dim = c(nA,1))
solQP <- solve.QP(cov(mData), zeros, aMat, bVec, meq = 1)
# rescale variables to obtain weights
w <- as.matrix(solQP$solution/sum(solQP$solution))
# 2. Generate solution with portfolio.optim (using artificial data from above)
port.1 <-portfolio.optim(mData,riskless=rf)
port.1.w <-port.1$pw
port.1.w <-matrix(port.1.w)
# 3. Compare portfolio weights from the two methodologies:
compare <-cbind(w,port.1$pw)
compare
[,1] [,2]
[1,] 0.337932967 0.181547633
[2,] 0.073836572 0.055100415
[3,] 0.160612441 0.095800361
[4,] 0.164491490 0.102811562
[5,] 0.005034532 0.003214622
[6,] 0.147473396 0.088792283
[7,] -0.122882875 0.000000000
[8,] 0.127924865 0.067705050
[9,] 0.026626940 0.012507530
[10,] 0.078949672 0.054834759