I have a blurry image with a sharp edge and I want to use the profile of that sharp edge to estimate the point spread function (PSF) of the imaging system (assuming that it is symmetric). The profile of the edge gives me the "edge spread function" (ESF) and the derivative of that gives me the "line spread function" (LSF). I am trying to follow these directions that I found in an old paper on how to convert from the LSF to the PSF:
"If we form the one-dimensional Fourier transform of the LSF and rotate the resulting curve about its vertical axis, the surface thus generated proves to be the two-dimensional fourier transform of the PSF. Hence it is merely necessary to take a two-dimensional inverse Fourier transform to obtain the PSF"
I can't seem to get this to work. The 2D FFT of a PSF-like function (for example a 2d gaussian) has lots of alternative positive and negative values, but if I rotate a 1D FFT, I get concentric rings of positive or negative values and the inverse transform looks nothing like a point-spread function. Am I missing a step or misunderstanding something? Any help would be appreciated! Thanks!
Edit: Here is some code showing my attempt to follow the procedure described
;generate x array
x=findgen(1000)/999*50-25
;generate gaussian test function in 1D
;P[0] = peak value
;P[1] = centroid
;P[2] = sigma
;P[3] = base level
P=[1.0,0.0,4.0,0.0]
test1d=gaussian_1d(x,P)
;Take the FFT of the test function
fft1d=fft(test1d)
;create an array with the frequency values for the FFT array, following the conventions used by IDL
;This piece of code to find freq is straight from IDL documentation: http://www.exelisvis.com/docs/FFT.html
N=n_elements(fft1d)
T=x[1]-x[0] ;T = sampling interval
fftx=(findgen((N-1)/2)+1)
is_N_even=(N MOD 2) EQ 0
if (is_N_even) then $
freq=[0.0,fftx,N/2,-N/2+fftx]/(N*T) $
else $
freq=[0.0,fftx,-(N/2+1)+fftx]/(N*T)
;Create a 1000x1000 array where each element holds the distance from the center
dim=1000
center=[(dim-1)/2.0,(dim-1)/2.0]
xarray=cmreplicate(findgen(dim),dim)
yarray=transpose(cmreplicate(findgen(dim),dim))
rarray=sqrt((xarray-center[0])^2+(yarray-center[1])^2)
rarray=rarray/max(rarray)*max(freq) ;scale rarray so max value is equal to highest freq in 1D FFT
;rotate the 1d FFT about zero to get a 2d array by interpolating the 1D function to the frequency values in the 2d array
fft2d=rarray*0.0
fft2d(findgen(n_elements(rarray)))=interpol(fft1d,freq,rarray(findgen(n_elements(rarray))))
;Take the inverse fourier transform of the 2d array
psf=fft(fft2d,/inverse)
;shift the PSF to be centered in the image
psf=shift(psf,500,500)
window,0,xsize=1000,ysize=1000
tvscl,abs(psf) ;visualize the absolute value of the result from the inverse 2d FFT