I was working on a bit of SQL for a project, and I noticed some seemingly strange behavior in SQL Server, with regard to what the answer looks like when dividing with decimals.
Here are some examples which illustrate the behavior I'm seeing:
DECLARE @Ratio Decimal(38,16)
SET @Ratio = CAST(210 as Decimal(38,16))/CAST(222 as Decimal(38,16));
select @Ratio -- Results in 0.9459450000000000
DECLARE @Ratio Decimal(38,16)
SET @Ratio = CAST(210 as Decimal)/CAST(222 as Decimal);
select @Ratio -- Results in 0.9459459459459459
For the code above, the answer for the query which is (seemingly) less precise gives a more precise value as the answer. When I cast both the dividend and the divisor as Decimal(38,16)
, I get a number with a scale of 6 (casting it to a Decimal(38,16)
again results in the 0's padding the scale).
When I cast the dividend and divisor to just a default Decimal, with no precision or scale set manually, I get the full 16 digits in the scale of my result.
Out of curiosity, I began experimenting more with it, using these queries:
select CAST(210 as Decimal(38,16))/CAST(222 as Decimal(38,16)) --0.945945
select CAST(210 as Decimal(28,16))/CAST(222 as Decimal(28,16)) --0.9459459459
select CAST(210 as Decimal(29,16))/CAST(222 as Decimal(29,16)) --0.945945945
As you can see, as I increase the precision, the scale of the answer appears to decrease. I can't see a correlation between the scale of the result vs the scale or precision of the dividend and divisor.
I found some other SO questions pointing to a place in the msdn documentation which states that the resulting precision and scale during an operation on a decimal is determined by performing a set of calculations on the precision and scale of the divisor and dividend, and that:
The result precision and scale have an absolute maximum of 38. When a result precision is greater than 38, the corresponding scale is reduced to prevent the integral part of a result from being truncated.
So I tried running through those equations myself to determine what the output of dividing a Decimal(38,16)
into another Decimal(38,16)
would look like, and according to what I found, I still should have gotten back a more precise number than I did.
So I'm either doing the math wrong, or there's something else going on here that I'm missing. I'd greatly appreciate any insight that any of you has to offer.
Thanks in advance...